Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Front Public Health ; 12: 1333077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584928

RESUMO

Background: Most existing studies have only investigated the direct effects of the built environment on respiratory diseases. However, there is mounting evidence that the built environment of cities has an indirect influence on public health via influencing air pollution. Exploring the "urban built environment-air pollution-respiratory diseases" cascade mechanism is important for creating a healthy respiratory environment, which is the aim of this study. Methods: The study gathered clinical data from 2015 to 2017 on patients with respiratory diseases from Tongji Hospital in Wuhan. Additionally, daily air pollution levels (sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter (PM2.5, PM10), and ozone (O3)), meteorological data (average temperature and relative humidity), and data on urban built environment were gathered. We used Spearman correlation to investigate the connection between air pollution and meteorological variables; distributed lag non-linear model (DLNM) was used to investigate the short-term relationships between respiratory diseases, air pollutants, and meteorological factors; the impacts of spatial heterogeneity in the built environment on air pollution were examined using the multiscale geographically weighted regression model (MGWR). Results: During the study period, the mean level of respiratory diseases (average age 54) was 15.97 persons per day, of which 9.519 for males (average age 57) and 6.451 for females (average age 48); the 24 h mean levels of PM10, PM2.5, NO2, SO2 and O3 were 78.056 µg/m3, 71.962 µg/m3, 54.468 µg/m3, 12.898 µg/m3, and 46.904 µg/m3, respectively; highest association was investigated between PM10 and SO2 (r = 0.762, p < 0.01), followed by NO2 and PM2.5 (r = 0.73, p < 0.01), and PM10 and PM2.5 (r = 0.704, p < 0.01). We observed a significant lag effect of NO2 on respiratory diseases, for lag 0 day and lag 1 day, a 10 µg/m3 increase in NO2 concentration corresponded to 1.009% (95% CI: 1.001, 1.017%) and 1.005% (95% CI: 1.001, 1.011%) increase of respiratory diseases. The spatial distribution of NO2 was significantly influenced by high-density urban development (population density, building density, number of shopping service facilities, and construction land, the bandwidth of these four factors are 43), while green space and parks can effectively reduce air pollution (R2 = 0.649). Conclusion: Previous studies have focused on the effects of air pollution on respiratory diseases and the effects of built environment on air pollution, while this study combines these three aspects and explores the relationship between them. Furthermore, the theory of the "built environment-air pollution-respiratory diseases" cascading mechanism is practically investigated and broken down into specific experimental steps, which has not been found in previous studies. Additionally, we observed a lag effect of NO2 on respiratory diseases and spatial heterogeneity of built environment in the distribution of NO2.


Assuntos
Poluição do Ar , Doenças Respiratórias , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Cidades , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/etiologia , Material Particulado/análise
2.
F S Rep ; 5(1): 55-62, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524217

RESUMO

Objective: To evaluate the clinical outcomes in the carriers of insertional translocation (IT). Design: Retrospective case series. Setting: University-affiliated reproductive medical center. Patients: Twenty-three couples with ITs. Intervention: No direct interventions were involved; however, this study included patients who underwent preimplantation genetic testing for structural chromosomal rearrangements (PGT-SR). Main Outcome Measure: Outcome of preimplantation genetic testing for structural chromosomal rearrangements and percentage of blastocysts available for transfer. Results: Among 23 IT carriers, 15 were simple interchromosome ITs (type A), 3 were intrachromosome IT carriers (type B), and 5 were interchromosome IT carriers combined with other translocations (type C). A total of 190 blastocysts from 30 cycles were biopsied, 187 embryos were tested successfully, and only 57 blastocysts (30.5%) from 21 patients were available for transfer (normal or balanced). The unbalanced rearrangement rate of type C was 79.2% (42/53), and the proportion of type A was 50.0% (57/114), which was significantly higher than that of type B (5%, 1/20). In type A, the probability of embryos harboring unbalanced rearrangement in female carriers was 56.0% (51/91), which was higher than that in male carriers (26.1%, 6/23). Furthermore, the haploid autosomal length value of the inserted fragment was correlated linearly with the incidence of abnormal embryos. In type A gametes, most gametes produced by 2:2 separation without crossover, and no 3:1 separation gamete was observed. Conclusions: The chance of identifying normal or balanced and mosaic blastocysts per mature oocytes in patients with ITs are 16.6% (67/404). Greater IT complexity results in fewer transferable embryos. For simple interchromosome ITs, female carriers and those with higher haploid autosomal length values have a higher risk of producing embryos with unbalanced rearrangement.

3.
Eur J Med Chem ; 268: 116273, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432059

RESUMO

Autophagy is a process of self-renewal in cells, which not only provides the necessary nutrients for cells, but also clears necrotic organelles. Autophagy disorders are closely related to diseases such as cancer. UNC-51-like kinase 1 (ULK1) is a serine/threonine protein kinase that plays a crucial role in receiving input from energy and nutrient sensors, activating autophagy to maintain cellular homeostasis under stressful conditions. In recent years, targeting ULK1 has become a highly promising strategy for cancer treatment. This review introduces the regulatory mechanism of ULK1 in autophagy through the AMPK/mTOR/ULK1 pathway and reviews the research progress of ULK1 activators and inhibitors and their applications in cancer treatment. In addition, we analyze the binding modes between ULK1 and modulators through virtual molecular docking, which will provide a reliable basis and theoretical guidance for the design and development of new therapeutic drugs targeting ULK1.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Simulação de Acoplamento Molecular , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Autofagia , Neoplasias/tratamento farmacológico
4.
Anal Bioanal Chem ; 416(10): 2453-2464, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400940

RESUMO

The digital polymerase chain reaction (dPCR) is a new and developing nucleic acid detection technology with high sensitivity that can realize the absolute quantitative analysis of samples. In order to improve the accuracy of quantitative results, real-time digital PCR emphasizes the kinetic information during amplification to identify prominent abnormal data. However, it is challenging to use a unified standard to accurately classify the amplification curve of each well as negative and positive, due to the interference caused by various factors in the experiment. In this work, a normal distribution-based cycle threshold value self-correcting model (NCSM) was established, which focused on the feature of the cycle threshold values in amplification curves and conducted continuous detection and correction on the whole. The cycle threshold value distribution was closer to the ideal normal distribution to avoid the influence of interference. Thus, the model achieves a more accurate classification between positive and negative results. The corrective process was applied to plasmid samples and resulted in an accuracy improvement from 92 to 99%. The coefficient of variation was below 5% when considering the quantitation of a range between 100 and 10,000 copies. At the same time, by utilizing this model, the distribution of cycle threshold values at the endpoint can be predicted with fewer thermal cycles, which can reduce the cycling time by around 25% while maintaining a consistency of more than 98%. Therefore, using the NCSM can effectively enhance the quantitative accuracy and increase the detection efficiency based on the real-time dPCR platform.


Assuntos
Distribuição Normal , Reação em Cadeia da Polimerase em Tempo Real/métodos , Plasmídeos
5.
Nat Commun ; 15(1): 1118, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320994

RESUMO

Immunotherapy with immune checkpoint blockade (ICB) for glioblastoma (GBM) is promising but its clinical efficacy is seriously challenged by the blood-tumor barrier (BTB) and immunosuppressive tumor microenvironment. Here, anti-programmed death-ligand 1 antibodies (aPD-L1) are loaded into a redox-responsive micelle and the ICB efficacy is further amplified by paclitaxel (PTX)-induced immunogenic cell death (ICD) via a co-encapsulation approach for the reinvigoration of local anti-GBM immune responses. Consequently, the micelles cross the BTB and are retained in the reductive tumor microenvironment without altering the bioactivity of aPD-L1. The ICB efficacy is enhanced by the aPD-L1 and PTX combination with suppression of primary and recurrent GBM, accumulation of cytotoxic T lymphocytes, and induction of long-lasting immunological memory in the orthotopic GBM-bearing mice. The co-encapsulation approach facilitating efficient antibody delivery and combining with chemotherapeutic agent-induced ICD demonstrate that the chemo-immunotherapy might reprogram local immunity to empower immunotherapy against GBM.


Assuntos
Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Micelas , Inibidores de Checkpoint Imunológico/uso terapêutico , Polímeros/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Paclitaxel/uso terapêutico , Imunoterapia , Microambiente Tumoral
7.
Bioorg Chem ; 145: 107190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377816

RESUMO

The fruits of Amomum villosum are often considered a medicinal and food homologous material and have been found to have therapeutic effects in chronic enteritis, gastroenteritis, and duodenal ulcer. The aim of this study is to discover the anti-inflammatory active ingredients from dried ripe fruits of A. villosum and to elucidate the molecular mechanisms. We verified that the inhibitory activity of the ethyl acetate extract was superior to Dexamethasone (Dex), so we ultimately chose to study the ethyl acetate extract from the fruits of A. villosum. A total of 33 compounds were isolated from its ethyl acetate extract, including nine known diterpenoids (compounds 1-9), twelve known sesquiterpenoids (compounds 10-21), ten known phenolics (compounds 22, 23, 25-29, 31-33) and two new phenolics (24 and 30). On the basis of chemical evidences and spectral data analysis (UV, ECD, Optical rotation data, 1D and 2D-NMR, HR-ESI-MS, NMR chemical shift calculations), the structures of new compounds were elucidated. Among these compounds, isocoronarin D (5) was found to have good anti-inflammatory activity. Further research has found that isocoronarin D can down-regulate the protein levels of COX2 and NOS2, activate Nrf2/Keap1 and suppress NF-κB signaling pathway in LPS-induced RAW264.7 cells. In addition, isocoronarin D inhibited inflammasome assembly during inflammasome activation by hampering the binding of NLRP3 and ASC. Further evidence revealed that isocoronarin D suppressed the assembly of the NLRP3 inflammasome via blocking the formation of ASC specks. From these results, isocoronarin D may be the important bioactive compound of A. villosum and exhibits anti-inflammatory effects by regulating the NF-κB/Nrf2/NLRP3 axis in macrophages.


Assuntos
Acetatos , Amomum , Diterpenos , Imidazóis , Sulfonamidas , Tiofenos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Amomum/química , Terpenos , NF-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Frutas/química , Fator 2 Relacionado a NF-E2/metabolismo , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia
8.
Int J Biol Macromol ; 256(Pt 2): 128453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016613

RESUMO

Osteoarthritis (OA) is the most prevalent age-related and degenerative joint disease with limited treatment options. Previous studies have identified the therapeutic effects of mesenchymal stem cells (MSCs) therapy. Nevertheless, chronic inflammation impedes MSCs therapeutic effect. There have been reports suggesting that circular RNAs (circRNAs) are involved in OA and chondrogenesis. The combination of MSCs and circRNAs in therapies appears to be a promising option. In this study, we identified circIRAK3 as a significant regulator in cartilage degeneration and chondrogenesis through high-throughput sequencing analyses. We observed increased circIRAK3 in OA cartilage and during MSCs chondrogenesis. Knockdown of circIRAK3 resulted in excessive apoptosis, inhibited proliferation, and degradation of chondrocytes, along with the inhibition of MSCs chondrogenesis. Mechanistically, circIRAK3 bound to HNRNP U and competitively prevented its binding to IL-1ß, TNFα, and IL6 mRNA, thereby promoting mRNA degradation. Notably, circIRAK3 expression in plasma increased with higher OARSI scores. Intra-articular injection of adeno-associated virus-circIRAK3 delayed cartilage degeneration and reduced inflammation in DMM mouse model. Our study highlights a compensatory regulation network of circIRAK3 in chondrocytes in response to inflammation. CircIRAK3 has the potential to serve as a new therapeutic target for OA. Furthermore, therapies targeting circIRAK3 combined with MSCs hold promise.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Citocinas/genética , Citocinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Circular/metabolismo , Retroalimentação , Condrogênese/genética , Inflamação/genética , Inflamação/metabolismo , Condrócitos
9.
J Mol Graph Model ; 126: 108650, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871455

RESUMO

While surfactants are widely used in phosphogypsum, their interactions with the phosphogypsum-water interface remain unclear. This study investigates the impact of three types of surfactants, namely polycarboxylate-based surfactant (PCE-TPEG), naphthalene-based surfactant (NS), and melamine-based surfactant (MS), on the performance of phosphorus building gypsum (PBG). Additionally, a nanoscale model of the PBG-surfactant-water interface is constructed using molecular dynamics to elucidate the mechanisms underlying the interaction between different surfactants and PBG at multiple scales. The results demonstrate that all surfactants enhance the mechanical properties of PBG. PCE-TPEG exhibits the most pronounced improvement. In the model, PCE-TPEG molecules likely undergo comb-like adsorption, while NS and MS molecules tend to adsorb on both ends of the crystal plane. Changes in the potential difference between CaSO4·2H2O and H2O, as well as between CaSO4·2H2O and the surfactant, play a crucial role in adsorption. PCE-TPEG, NS, and MS molecules tend to spread horizontally in a vacuum state. With the addition of water molecules, they transition to spatial adsorption. Ca2+ easily interacts with -COO- and -SO3- groups, leading to reduced migration and flexibility of the main chain. The adsorption process of surfactants at the gypsum-water interface occurs spontaneously and Electrostatic forces are the main driving factor. This study contributes to a more comprehensive understanding on the behaviour of the phosphorus building gypsum/surfactant composites.


Assuntos
Sulfato de Cálcio , Tensoativos , Tensoativos/química , Simulação de Dinâmica Molecular , Água/química , Fósforo
10.
Diagn Pathol ; 18(1): 129, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037110

RESUMO

AIMS: To investigate the expression of polo-like kinase 1 protein (PLK1) and its phosphorylation level (p-PLK1) in extranodal NK/T cell lymphoma (NKTCL) and their correlation with clinical characteristics and prognosis. METHODS: We collected 40 cases of NKTCL (referred to as the experimental group), which received diagnoses at the First Affiliated Hospital of Zhengzhou University between January 2018 and October 2022. Concurrently, we assembled a control group, including 20 cases afflicted with nasopharyngeal mucosal lymphoid hyperplasia diseases during the same timeframe. We utilized immunohistochemical techniques to evaluate the levels of PLK1 and p-PLK1 expression in both the experimental and control groups. Subsequently, we conducted an analysis to identify disparities in their expression and explore their relationships with clinical characteristics and patient prognosis. RESULTS: Among the 40 NKTCL patients, there were 27 males and 11 females, with a median age of 51 years (range 12-80 years). Compared to the control group, the tissue samples of NKTCL patients exhibited significantly elevated expression levels and active phosphorylation levels of PLK1 (P < 0.05). Correlation analysis of the immunohistochemical H score and Ki-67 positive rate of PLK1 and p-PLK1, revealed a significant positive correlation for both (P < 0.0001, each). No statistically significant differences were observed in the distribution of PLK1 and p-PLK1 expression in NKTCL patients with respect to gender, age, Ann Arbor stage, PINK-E score, B-symptoms, lactate dehydrogenase, ß2-microglobulin, blood EBV-DNA, bone marrow invasion, and lymph node metastasis (p > 0.05). Grouping based on PLK1 and p-PLK1 immunohistochemical H-scores revealed that the high expression of PLK1 and p-PLK1 was associated with poor prognosis. CONCLUSIONS: The expression levels and active phosphorylation levels of PLK1 were significantly increased in NK/T cell lymphoma, and patients with overexpression of PLK1 and p-PLK1 had a poorer prognosis.


Assuntos
Linfoma Extranodal de Células T-NK , Linfoma de Células T , Masculino , Feminino , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Relevância Clínica , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Prognóstico , Linfoma de Células T/diagnóstico , Linfoma Extranodal de Células T-NK/patologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-37966511

RESUMO

Functional deficits including cognitive impairment and social dysfunction are the core symptoms of schizophrenia (SCZ), and sensory gating (SG) deficits may be involved in the pathological mechanism of functional deficits in SCZ. This study was to investigate the relationship between defective P50 inhibition and functional deficits in first-episode drug naïve (FEDN) SCZ patients. A total of 95 FEDN SCZ patients and 53 healthy controls (HC) were recruited. The Chinese version of UCSD Performance-Based Skills (UPSA), MATRICS Consensus Cognitive Battery (MCCB), and EEG system were used to assess the social function, cognitive performance, and P50 inhibition, respectively. The MCCB total score and eight domain scores were significantly lower in patients with FEDN SCZ than those in HC (all p < 0.05). The UPSA total score and financial skills scores were also significantly lower in SCZ patients than that in the HC (all p < 0.05). Compared with HC, patients with FEDF SCZ had a higher P50 ratio (all p < 0.05). There was no correlation between P50 components and MCCB scores in patients with FEDF SCZ. However, there was only a correlation between the P50 ratio and UPSA financial skills, communication skills, or total score in patients (all p < 0.05). Defective P50 inhibition in FEDN SCZ patients may be associated with social dysfunction but not cognitive impairment, suggesting that the social dysfunction and cognitive impairment of patients with FEDN SCZ may have different pathogenic mechanisms.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37980652

RESUMO

OBJECTIVE: To explore whether the use of intravenous contrast-enhanced ultrasound (CEUS) can improve the diagnostic accuracy of T stage of gastric cancer on the basis of oral contrast-enhanced ultrasound (OCEUS). METHODS: Eighty-one patients with gastric cancer who underwent preoperative CEUS. Criteria for T staging was AJCC Stage 8th Edition. To compare the diagnostic accuracy, sensitivity and specificity of OCEUS and CEUS for T staging of gastric cancer using pathological results as the gold standard. RESULTS: There were differences in the diagnostic accuracy of T2 (P = 0.048), T3(P = 0.002) and T4 (P = 0.000) between OCEUS and CEUS. And there was no difference in diagnostic accuracy for T1 (P = 0.118). CEUS significantly improved diagnostic sensitivity and specificity in T3 (42.86% to 61.90% for sensitivity, 86.96% to 93.75% for specificity), and T4 (64.71% to 76.47% for sensitivity, 78.33% to 95.74% for specificity). CONCLUSION: Compared with OCEUS, CEUS did improve the diagnostic accuracy of T2, T3, and T4 stages of gastric cancer.

13.
Sports Med ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938533

RESUMO

BACKGROUND: Molecular-based approaches to understanding concussion pathophysiology provide complex biological information that can advance concussion research and identify potential diagnostic and/or prognostic biomarkers of injury. OBJECTIVE: The aim of this study was to identify gene expression changes in peripheral blood that are initiated following concussion and are relevant to concussion response and recovery. METHODS: We analyzed whole blood transcriptomes in a large cohort of concussed and control collegiate athletes who were participating in the multicenter prospective cohort Concussion Assessment, Research, and Education (CARE) Consortium study. Blood samples were collected from collegiate athletes at preseason (baseline), within 6 h of concussion injury, and at four additional prescribed time points spanning 24 h to 6 months post-injury. RNA sequencing was performed on samples from 230 concussed, 130 contact control, and 102 non-contact control athletes. Differential gene expression and deconvolution analysis were performed at each time point relative to baseline. RESULTS: Cytokine and immune response signaling pathways were activated immediately after concussion, but at later time points these pathways appeared to be suppressed relative to the contact control group. We also found that the proportion of neutrophils increased and natural killer cells decreased in the blood following concussion. CONCLUSIONS: Transcriptome signatures in the blood reflect the known pathophysiology of concussion and may be useful for defining the immediate biological response and the time course for recovery. In addition, the identified immune response pathways and changes in immune cell type proportions following a concussion may inform future treatment strategies.

14.
J Agric Food Chem ; 71(46): 17723-17732, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938806

RESUMO

Ustilaginoidea virens is a destructive phytopathogenic fungus that causes false smut disease in rice. In this study, the natural product 2,4-di-tert-butylphenol (2,4-DTBP) was found to be an environmentally friendly and effective agent for the first time, which exhibited strong antifungal activity against U. virens, with an EC50 value of 0.087 mmol/L. The scanning electron microscopy, fluorescence staining, and biochemical assays indicated that 2,4-DTBP could destroy the cell wall, cell membrane, and cellular redox homeostasis of U. virens, ultimately resulting in fungal cell death. Through the transcriptomic analysis, a total of 353 genes were significantly upregulated and 367 genes were significantly downregulated, focusing on the spindle microtubule assembly, cell wall and membrane, redox homeostasis, mycotoxin biosynthesis, and intracellular metabolism. These results enhanced the understanding of the antifungal activity and action mechanisms of 2,4-DTBP against U. virens, supporting it to be a potential antifungal agent for the control of false smut disease.


Assuntos
Hypocreales , Oryza , Antifúngicos/farmacologia , Hypocreales/genética , Fenóis/farmacologia , Oryza/genética , Doenças das Plantas/microbiologia
15.
Chem Sci ; 14(41): 11546-11553, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886092

RESUMO

The introduction of difluoromethylene moieties into organic molecules has garnered significant attention due to their profound influence on the physicochemical and biological properties of compounds. Nonetheless, the existing approaches for accessing difluoroalkanes from readily available feedstock chemicals remain limited. In this study, we present an efficient and modular protocol for the synthesis of difluorinated compounds from alkenes, employing the readily accessible reagent, ClCF2SO2Na, as a versatile "difluoromethylene" linchpin. By means of an organophotoredox-catalysed hydrochlorodifluoromethylation of alkenes, followed by a ligated boryl radical-facilitated halogen atom transfer (XAT) process, we have successfully obtained various difluorinated compounds, including gem-difluoroalkanes, gem-difluoroalkenes, difluoromethyl alkanes, and difluoromethyl alkenes, with satisfactory yields. The practical utility of this linchpin strategy has been demonstrated through the successful preparation of CF2-linked derivatives of complex drugs and natural products. This method opens up new avenues for the synthesis of structurally diverse difluorinated hydrocarbons and highlights the utility of ligated boryl radicals in organofluorine chemistry.

16.
BME Front ; 4: 0027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849675

RESUMO

Objective and Impact Statement: We describe an electroenzymatic mediator (EM) sensor based on an electroenzymatic assembly peak separation strategy, which can efficiently realize the simultaneous detection of 3 typical cardiovascular disease (CVD) metabolites in 5 µl of plasma under one test. This work has substantial implications toward improving the efficiency of chronic CVD assessment. Introduction: Monitoring CVD of metabolites is strongly associated with disease risk. Independent and time-consuming detection in hospitals is unfavorable for chronic CVD management. Methods: The EM was flexibly designed by the cross-linking of electron mediators and enzymes, and 3 EM layers with different characteristics were assembled on one electrode. Electrons were transferred under tunable potential; 3 metabolites were quantitatively detected by 3 peak currents that correlated with metabolite concentrations. Results: In this study, the EM sensor showed high sensitivity for the simultaneous detection of 3 metabolites with a lower limit of 0.01 mM. The linear correlation between the sensor and clinical was greater than 0.980 for 242 patients, and the consistency of risk assessment was 94.6%. Conclusion: Metabolites could be expanded by the EM, and the sensor could be a promising candidate as a home healthcare tool for CVD risk assessment.

17.
Int Immunopharmacol ; 125(Pt A): 111109, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883816

RESUMO

The mechanical properties of the anterior cruciate ligament (ACL) in the knee have been highlighted, but its role in the regulation of the joint microenvironment remains unclear, especially in the progression of Knee Osteoarthritis (KOA). Here, single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) data were integrated to reveal the transcriptional and epigenomic landscape of ACL in normal and OA states. We identified a novel subpopulation of fibroblasts in ACL, which provides new insights into the role of the ACL in knee homeostasis and disease. Degeneration of the ACL during OA mechanically alters the knee joint homeostasis and influences the microenvironment by regulating inflammatory- and osteogenic-related factors, thereby contributing to the progression of KOA. Additionally, the specific mechanism by which these Inflammation-associated Fibroblasts (IAFs) regulate KOA progression was uncovered, providing new foundation for the development of targeted treatments for KOA.


Assuntos
Lesões do Ligamento Cruzado Anterior , Osteoartrite do Joelho , Humanos , Ligamento Cruzado Anterior , Articulação do Joelho , Fibroblastos , Análise de Célula Única
18.
J Agric Food Chem ; 71(41): 15145-15155, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37800321

RESUMO

Abrus mollis Hance is a characteristic medicinal herb which is used in Guangdong and Guangxi provinces of China for making soup, medicinal meals, and herbal tea to treat dampheat jaundice and rib discomfort. Current phytochemical study on A. mollis led to the isolation of four new flavones, mollisone A-D (1-4), and thirty two known compounds (5-36). Their structures were characterized by an extensive analysis of spectroscopic data including IR, UV, HR-ESI-MS, and 1D and 2D NMR, as well as electronic circular dichroism calculation. In addition, in order to initially understand their biological activities for traditional applications, in vitro antioxidant and hepatoprotective tests were carried out, whose results illustrated that 25 compounds had significant free radical scavenging ability, and compounds 13 and 16 exhibited protective activities on D-GalN-induced LO2 cell damage than the positive control. Moreover, network pharmacological analysis revealed that the hepatoprotective activity of A. mollis involved multitargets and multipathways such as PI3K/Akt, MAPK, and JAK-STAT pathways and various biological processes such as positive regulation of phosphorylation and regulation of kinase activity. These results suggested that this species could serve as a potential hepatoprotective agent for functional food or medicinal use.


Assuntos
Abrus , Abrus/química , Extratos Vegetais/química , Fosfatidilinositol 3-Quinases/metabolismo , China , Fígado/metabolismo , Chá/metabolismo
19.
Mol Ther ; 31(12): 3594-3612, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37838829

RESUMO

Osteoarthritis (OA) is the most common joint disease, but no disease-modifying drugs have been approved for OA treatment. Mitophagy participates in mitochondrial homeostasis regulation by selectively clearing dysfunctional mitochondria, which might contribute to cartilage degeneration in OA. Here, we provide evidence of impaired mitophagy in OA chondrocytes, which exacerbates chondrocyte degeneration. Among the several classic mitophagy-regulating pathways and receptors, we found that FUNDC1 plays a key role in preserving chondrocyte homeostasis by inducing mitophagy. FUNDC1 knockdown in vitro and knockout in vivo decreased mitophagy and exacerbated mitochondrial dysfunction, exacerbating chondrocyte degeneration and OA progression. FUNDC1 overexpression via intra-articular injection of adeno-associated virus alleviated cartilage degeneration in OA. Mechanistically, our study demonstrated that PFKP interacts with and dephosphorylates FUNDC1 to induce mitophagy in chondrocytes. Further analysis identified KD025 as a candidate drug for restoring chondrocyte mitophagy by increasing the FUNDC1-PFKP interaction and thus alleviating cartilage degeneration in mice with DMM-induced OA. Our study highlights the role of the FUNDC1-PFKP interaction in chondrocyte homeostasis via mitophagy induction and identifies KD025 as a promising agent for treating OA by increasing chondrocyte mitophagy.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Camundongos , Mitofagia , Cartilagem Articular/metabolismo , Apoptose , Osteoartrite/terapia , Osteoartrite/metabolismo , Condrócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
20.
ACS Appl Mater Interfaces ; 15(42): 49511-49526, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37812455

RESUMO

Exosomes (EXOs) play a crucial role in biological action mechanisms. Understanding the biological process of single-molecule interactions on the surface of the EXO membrane is essential for elucidating the precise function of the EXO receptor. However, due to dimensional incompatibility, monitoring the binding events between EXOs of tens to hundreds of nanometers and biomolecules of nanometers using existing nanostructure antennas is difficult. Unlike the typical zero-mode waveguides (ZMWs), this work presents a nanocavity antenna (λvNAs) formed by nanocavities with diameters close to the visible light wavelength dimensions. Effective excitation volumes suitable for observing single-molecule fluorescence were generated in nanocavities of larger diameters than typical ZMWs; the optimal signal-to-noise ratio obtained was 19.5 when the diameter was 300 nm and the incident angle was ∼50°. EXOs with a size of 50-150 nm were loaded into λvNAs with an optimized diameter of 300-500 nm, resulting in appreciable occupancy rates that overcame the nanocavity size limitation for large-volume biomaterial loading. Additionally, this method identified the binding events between the single transmembrane CD9 proteins on the EXO surface and their monoclonal antibody anti-CD9, demonstrating that λvNAs expanded the application range beyond subwavelength ZMWs. Furthermore, the λvNAs provide a platform for obtaining in-depth knowledge of the interactions of single molecules with biomaterials ranging in size from tens to hundreds of nanometers.


Assuntos
Exossomos , Nanoestruturas , Nanoestruturas/química , Nanotecnologia/métodos , Microscopia de Fluorescência , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...